ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1. ![]() ![]() Неправдоподобная легенда гласит, что однажды Стирлинг размышлял над числами Стирлинга второго рода и в задумчивости бросал на стол 10 правильных игральных костей. После очередного броска он вдруг заметил, что в выпавшей комбинации очков присутствуют все числа от 1 до 6. Тут же Стирлинг задумался, а какова же вероятность такого события? Какова вероятность, что при бросании 10 костей каждое число очков от 1 до 6 выпадет хотя бы на одной кости? ![]() ![]() |
Страница: << 1 2 3 [Всего задач: 15]
Игровой круг в телевикторине "Что? Где? Когда?" разбит на 13 одинаковых секторов. Секторы пронумерованы числами от 1 до 13. В каждом секторе в начале игры лежит конверт с вопросом. Игроки выбирают случайный сектор с помощью волчка со стрелкой. Если этот сектор уже выпадал прежде, то конверта в нём уже нет, и тогда играет следующий по часовой стрелке сектор. Если он тоже пуст, – следующий и т.д., пока не встретится непустой сектор. До перерыва игроки разыграли шесть секторов.
В одном пакетике два пирожка с капустой, в другом два с вишней, в третьем – один с капустой и один с вишней. Выглядят и весят пирожки одинаково, так что неизвестно, какой с чем. Внуку в школу нужно дать один пирожок. Бабушка хочет дать пирожок с вишней, но она сама запуталась в своих пирожках и определить начинку может, только надломив пирожок. Надломленный пирожок внук не хочет, он хочет целый.
У одного островного племени есть обычай – во время ритуального танца шаман подбрасывает высоко вверх три тонких прямых прута одинаковой длины, связанных в подобие буквы П. Соседние прутья связаны короткой ниткой и поэтому свободно вращаются друг относительно друга. Прутья падают на песок, образуя случайную фигуру. Если получается самопересечение (первый и третий прутья перекрещиваются), то племя в наступающем году ждут неурожаи и всякие неприятности. Если же самопересечения нет, то год будет удачным – сытным и счастливым. Найдите вероятность того, что на 2017 год прутья напророчат удачу.
Неправдоподобная легенда гласит, что однажды Стирлинг размышлял над числами Стирлинга второго рода и в задумчивости бросал на стол 10 правильных игральных костей. После очередного броска он вдруг заметил, что в выпавшей комбинации очков присутствуют все числа от 1 до 6. Тут же Стирлинг задумался, а какова же вероятность такого события? Какова вероятность, что при бросании 10 костей каждое число очков от 1 до 6 выпадет хотя бы на одной кости?
Последовательность состоит из 19 единиц и 49 нулей, стоящих в случайном порядке. Назовём группой максимальную подпоследовательность из одинаковых символов. Например, в последовательности 110001001111 пять групп: две единицы, потом три нуля, потом одна единица, потом два нуля и, наконец, четыре единицы. Найдите математическое ожидание длины первой группы.
Страница: << 1 2 3 [Всего задач: 15] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |