ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан правильный 12-угольник A1A2...A12.
Можно ли из 12 векторов    выбрать семь, сумма которых равна нулевому вектору?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 66104  (#1)

Темы:   [ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Дан правильный 12-угольник A1A2...A12.
Можно ли из 12 векторов    выбрать семь, сумма которых равна нулевому вектору?

Прислать комментарий     Решение

Задача 66105  (#2)

Темы:   [ Концентрические окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

Даны две концентрические окружности и точка A внутри меньшей из них. Угол величиной α с вершиной в A высекает на этих окружностях по дуге. Докажите, что если дуга большей окружности имеет угловой размер α, то и дуга меньшей имеет угловой размер α.

Прислать комментарий     Решение

Задача 66106  (#3)

Темы:   [ Числовые таблицы и их свойства ]
[ Простые числа и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

В каждую клетку квадрата 1000×1000 вписано число так, что в любом не выходящем за пределы квадрата прямоугольнике площади s со сторонами, проходящими по границам клеток, сумма чисел одна и та же. При каких s числа во всех клетках обязательно будут одинаковы?

Прислать комментарий     Решение

Задача 66107  (#4)

Темы:   [ Перестановки и подстановки (прочее) ]
[ Полуинварианты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

По кругу стоят 10 детей разного роста. Время от времени один из них перебегает на другое место (между какими-то двумя детьми). Дети хотят как можно скорее встать по росту в порядке возрастания по часовой стрелке (от самого низкого к самому высокому). Какого наименьшего количества таких перебежек им заведомо хватит, как бы они ни стояли изначально?

Прислать комментарий     Решение

Задача 66108  (#5)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
[ Перпендикулярные прямые ]
[ Центральная симметрия помогает решить задачу ]
[ Производная и касательная ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Графики двух квадратных трёхчленов пересекаются в двух точках. В обеих точках касательные к графикам перпендикулярны.
Верно ли, что оси симметрии графиков совпадают?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .