Страница: 1
2 >> [Всего задач: 6]
Задача
66609
(#1)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$
Задача
66610
(#2)
|
|
Сложность: 3 Классы: 9,10,11
|
На экране компьютера напечатано натуральное число, делящееся на 7, а курсор находится в промежутке между некоторыми двумя его соседними цифрами. Докажите, что существует такая цифра, что, если ее впечатать в этот промежуток любое число раз, то все получившиеся числа также будут делиться на 7.
Например, все числа 259, 2569, 25669, 256669, ..., а также 2359, 23359, 233359, ... делятся на 7.
Задача
66536
(#3)
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
В остроугольном треугольнике ABC проведены высоты AA' и BB'. Точка O – центр окружности, описанной около треугольника ABC. Докажите, что расстояние от точки A' до прямой B' равно расстоянию от точки B' до прямой A'.
Задача
66611
(#4)
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что для любых различных натуральных чисел $m$ и $n$ справедливо неравенство $|\sqrt[n]{m}-\sqrt[m]{n}|>\frac{1}{mn}$.
Задача
66612
(#5)
|
|
Сложность: 5 Классы: 9,10,11
|
Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
Страница: 1
2 >> [Всего задач: 6]