ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

К Ивану на день рождения пришли $3 n$ гостей. У Ивана есть $3 n$ цилиндров с написанными сверху буквами А, Б и В, по $n$ штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на $3$, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно $(3n)!$ различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 66556  (#1)

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3
Классы: 8,9,10

Существует ли натуральное число, делящееся на 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
Прислать комментарий     Решение


Задача 66557  (#2)

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10

Из шести палочек попарно различной длины сложены два треугольника (по три палочки в каждом). Всегда ли можно сложить из них один треугольник, стороны которого состоят из одной, двух и трех палочек соответственно?
Прислать комментарий     Решение


Задача 66558  (#3)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Индукция (прочее) ]
[ Инварианты ]
Сложность: 3
Классы: 8,9,10

Три богатыря сражаются со Змеем Горынычем. Илья Муромец каждым своим ударом отрубает половину всех голов и еще одну, Добрыня Никитич — треть всех голов и еще две, а Алёша Попович — четверть всех голов и еще три. Богатыри бьют по одному, в том порядке, в котором считают нужным. Если ни один богатырь не может ударить из-за того, что число голов получится нецелым, то Змей съедает богатырей. Смогут ли богатыри отрубить все головы $20^{20}$-головому Змею?
Прислать комментарий     Решение


Задача 66559  (#4)

Тема:   [ Треугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Соколов А.

В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66560  (#5)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 4
Классы: 8,9,10

К Ивану на день рождения пришли $3 n$ гостей. У Ивана есть $3 n$ цилиндров с написанными сверху буквами А, Б и В, по $n$ штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на $3$, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно $(3n)!$ различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .