ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_1,\ldots,x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. Когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что $0\leqslant x_1\leqslant\ldots\leqslant x_{10}$. Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 66605  (#1)

Темы:   [ Теория чисел. Делимость ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Приведите пример девятизначного натурального числа, которое делится на 2, если зачеркнуть вторую (слева) цифру, на 3 — если зачеркнуть в исходном числе третью цифру, ..., делится на 9, если в исходном числе зачеркнуть девятую цифру.
Прислать комментарий     Решение


Задача 66536  (#2)

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники (прочее) ]
[ Планиметрия (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

В остроугольном треугольнике ABC проведены высоты AA' и BB'. Точка O – центр окружности, описанной около треугольника ABC. Докажите, что расстояние от точки A' до прямой B' равно расстоянию от точки B' до прямой A'.
Прислать комментарий     Решение


Задача 66532  (#3)

Темы:   [ Симметричная стратегия ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.
Прислать комментарий     Решение


Задача 66606  (#4)

Темы:   [ Раскраски ]
[ Системы точек ]
[ Геометрия (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Каждая точка плоскости раскрашена в один из трех цветов. Обязательно ли найдется треугольник площади 1, все вершины которого имеют одинаковый цвет?
Прислать комментарий     Решение


Задача 66607  (#5)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_1,\ldots,x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. Когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что $0\leqslant x_1\leqslant\ldots\leqslant x_{10}$. Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .