ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре?

Вниз   Решение


Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 66666  (#8.1)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.
Прислать комментарий     Решение


Задача 66667  (#8.2)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники ]
Сложность: 3
Классы: 8,9

Около прямоугольника $ABCD$ описана окружность. На меньшей дуге $BC$ окружности взята произвольная точка $E$. К окружности проведена касательная в точке $B$, пересекающая прямую $CE$ в точке $G$. Отрезки $AE$ и $BD$ пересекаются в точке $K$. Докажите, что прямые $GK$ и $AD$ перпендикулярны.
Прислать комментарий     Решение


Задача 66668  (#8.3)

Темы:   [ Углы между биссектрисами ]
[ Вписанные четырехугольники ]
[ Теорема синусов ]
Сложность: 3
Классы: 8,9

В треугольнике $ABC$ угол $A$ равен $60^{\circ}$, $AA'$, $BB'$, $CC'$ – биссектрисы. Докажите, что $\angle B'A'C'\leq 60^{\circ}$.
Прислать комментарий     Решение


Задача 66669  (#8.4)

Тема:   [ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4-
Классы: 8,9

Автор: Saghafian M.

Найдите все такие конфигурации из шести точек общего положения на плоскости, что треугольник, образованный любыми тремя из них, равен треугольнику, образованному тремя остальными.
Прислать комментарий     Решение


Задача 66670  (#8.5)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

На стороне $AB$ квадрата $ABCD$ вне его построен равнобедренный треугольник $ABE$ ($AE=BE$). Пусть $M$ – середина $AE$, $O$ – точка пересечения $AC$ и $BD$, $K$ – точка пересечения $ED$ и $OM$. Докажите, что $EK=KO$.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .