Страница: 1
2 >> [Всего задач: 8]
|
|
Сложность: 3 Классы: 8,9,10,11
|
Мортеза отметил на плоскости шесть точек и нашел площади всех 20 треугольников с вершинами в этих точках. Может ли оказаться, что все полученные числа целые, а их сумма равна 2019?
|
|
Сложность: 3 Классы: 8,9,10,11
|
На плоскости отмечено пять точек. Найдите наибольшее возможное число подобных треугольников с вершинами в этих точках.
|
|
Сложность: 4- Классы: 9,10,11
|
Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?
Найдите все такие конфигурации из шести точек общего положения на плоскости, что треугольник, образованный любыми тремя из них, равен треугольнику, образованному тремя остальными.
|
|
Сложность: 4- Классы: 8,9,10,11
|
На плоскости даны восемь точек общего положения. В ряд выписали площади всех 56 треугольников с вершинами в этих точках. Докажите, что между выписанными числами можно поставить знаки «$+$» и «$-$» так, чтобы полученное выражение равнялось нулю.
Страница: 1
2 >> [Всего задач: 8]