ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В некотором государстве города соединены дорогами. Длина каждой дороги меньше 500 км, и из каждого города в любой другой можно попасть, проехав по дорогам меньше 500 км. Когда одна дорога оказалась закрытой на ремонт, выяснилось, что из каждого города можно проехать по оставшимся дорогам в любой другой. Доказать, что при этом можно проехать меньше 1500 км. ![]() ![]() Петя и Вася по очереди пишут на доску дроби вида $1/n$, где $n$ — натуральное, начинает Петя. Петя за ход пишет только одну дробь, а Вася за первый ход — одну, за второй ход — две, и так каждым следующим ходом на одну дробь больше. Вася хочет, чтобы после какого-то хода сумма всех дробей на доске была натуральным числом. Сможет ли Петя помешать ему? ![]() ![]() |
Страница: << 1 2 [Всего задач: 7]
Страница: << 1 2 [Всего задач: 7] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |