Страница: 1
2 3 4 5 6 7 >> [Всего задач: 44]
|
|
Сложность: 3 Классы: 8,9,10,11
|
В некотором государстве сложение и вычитание обозначаются знаками "!" и "?", но вам неизвестно, какой знак какой операции соответствует. Каждая операция применяется к двум числам, но про вычитание вам неизвестно,
вычитается левое число из правого или правое из левого. К примеру, выражение a?b обозначает одно из следующих: a – b, b – a или a + b. Вам неизвестно, как записываются
числа в этом государстве, но переменные a, b и скобки есть
и используются как обычно. Объясните, как с помощью них и знаков "!" и "?" записать выражение, которое гарантированно равно 20a – 18b.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины сторон AB и CD. Известно, что IM : AB = IN : CD.
Докажите, что ABCD – трапеция или параллелограмм.
|
|
Сложность: 4- Классы: 9,10,11
|
Любые три последовательные вершины невыпуклого многоугольника образуют прямоугольный треугольник. Обязательно ли у многоугольника найдется угол, равный $90$ или $270$ градусам?
|
|
Сложность: 4- Классы: 9,10
|
Девять окружностей расположены вокруг произвольного треугольника так, как показано на рисунке. Окружности, касающиеся одной и той же стороны треугольника, равны между собой. Докажите, что три прямые на рисунке пересекаются в одной точке. (Прямые проходят через вершины треугольника и центры соответствующих окружностей.)
Среди вершин двух неравных икосаэдров можно выбрать шесть, являющихся вершинами правильного октаэдра.
Найдите отношение рёбер икосаэдров.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 44]