ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Уткин А.

В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 66923  (#11 [8-9 кл])

Темы:   [ Изогональное сопряжение ]
[ Биссектриса угла ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Уткин А.

В треугольнике $ABC$ $\angle A=60^{\circ}$, $AD$ – биссектриса. Построен равносторонний треугольник $PDQ$ с высотой $DA$. Прямые $PB$ и $QC$ пересекаются в точке $K$. Докажите, что $AK$ – симедиана треугольника $ABC$.
Прислать комментарий     Решение


Задача 66924  (#12 [8-10 кл])

Темы:   [ Отрезки, заключенные между параллельными прямыми ]
[ Вписанные и описанные окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4+
Классы: 8,9,10,11

Авторы: Mudgal A., Srivastava P.

В неравнобедренном треугольнике $ABC$ $H$ – ортоцентр. Биссектриса угла $BHC$ пересекает прямые $AB$ и $AC$ в точках $P$ и $Q$ соответственно. Перпендикуляры, восставленные к $AB$ и $AC$ из $P$ и $Q$, пересекаются в точке $K$. Докажите, что прямая $KH$ делит отрезок $BC$ пополам.
Прислать комментарий     Решение


Задача 66925  (#13 [9-11 кл])

Темы:   [ Вневписанные окружности ]
[ Средняя линия треугольника ]
[ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9,10,11

Автор: Уткин А.

В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.
Прислать комментарий     Решение


Задача 66926  (#14 [9-11 кл])

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника.
Прислать комментарий     Решение


Задача 66927  (#15 [9-11 кл])

Темы:   [ Теорема Паскаля ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5-
Классы: 9,10,11

Окружность, проходящая через вершины $B$ и $D$ четырехугольника $ABCD$, пересекает его стороны $AB$, $BC$, $CD$ и $DA$ в точках $K$, $L$, $M$ и $N$ соответственно. Окружность, проходящая через точки $K$ и $M$, пересекает прямую $AC$ в точках $P$ и $Q$. Докажите, что точки $L$, $N$, $P$ и $Q$ лежат на одной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .