ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?

   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 67012  (#1)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Незнайка не знает о существовании операций умножения и возведения в степень. Однако он хорошо освоил сложение, вычитание, деление и извлечение квадратного корня, а также умеет пользоваться скобками. Упражняясь, Незнайка выбрал три числа 20, 2 и 2 и составил выражение $\sqrt{(2+20):2}$. А может ли он, используя точно те же три числа 20, 2 и 2, составить выражение, значение которого больше 30?
Прислать комментарий     Решение


Задача 67013  (#2)

Тема:   [ Простые числа и их свойства ]
Сложность: 3
Классы: 7,8,9,10

Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность  $n - p$  также является простым числом.

Прислать комментарий     Решение

Задача 67014  (#3)

Темы:   [ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Автор: Кноп К.А.

На стороне правильного восьмиугольника во внешнюю сторону построен квадрат. В восьмиугольнике проведены две диагонали, пересекающиеся в точке $B$ (см. рисунок). Найдите величину угла $ABC$. (Многоугольник называется правильным, если все его стороны равны и все его углы равны.)

Прислать комментарий     Решение

Задача 67015  (#4)

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 7,8,9,10

У входа на рынок есть двухчашечные весы без гирек, которыми каждый может воспользоваться по 2 раза в день. У торговца Александра есть 3 неотличимые внешне монеты весом 9, 10 и 11 грамм.

— Как жаль, что я не могу за 2 взвешивания разобраться, какая из моих монет сколько весит!

— Да! — поддакнул его сосед Борис. — У меня совершенно та же ситуация — тоже 3 неотличимые на вид монеты весом 9, 10 и 11 грамм!

Докажите, что если они объединят усилия, то за отведённые им 4 взвешивания определят веса всех шести монет.
Прислать комментарий     Решение


Задача 67016  (#5)

Темы:   [ Четырехугольники (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4
Классы: 8,9,10,11

Автор: Юран А.Ю.

Верно ли, что из любого выпуклого четырёхугольника можно вырезать три уменьшенные вдвое копии этого четырёхугольника?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .