ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч?

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 67139  (#6)

Темы:   [ Подсчет двумя способами ]
[ Средние величины ]
Сложность: 4
Классы: 8,9,10,11

Коттеджный посёлок имеет размеры 𝑛 × 𝑚 одинаковых квадратных участков. Собственники по очереди начали огораживать свои участки забором. Стоимость части забора между любыми двумя соседними участками составила 10 тысяч рублей и её полностью нёс тот сосед, который огораживал свой участок первым (расходы не делились между соседями, то есть некоторые могли вообще ничего не потратить). В итоге все участки оказались огорожены забором с четырёх сторон. Могло ли оказаться, что в итоге поровну жителей потратило на забор по 0, 10, 30 и 40 тысяч рублей, а остальные — по 20 тысяч?
Прислать комментарий     Решение


Задача 67140  (#7)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4
Классы: 9,10,11

Таня взяла список из ста чисел 1, 2, 3, . . . , 100 и вычеркнула несколько из них. Оказалось, что какие бы два числа из оставшихся Таня ни взяла в качестве $a$ и $b$, уравнение $x^2 + ax + b=0$ имеет хотя бы один действительный корень. Какое наибольшее количество чисел могло остаться не вычеркнутым?
Прислать комментарий     Решение


Задача 67141  (#8)

Темы:   [ Конус (прочее) ]
[ Площадь сечения ]
[ Площадь треугольника (прочее) ]
[ Экстремальные свойства треугольника (прочее) ]
Сложность: 4
Классы: 10,11

Автор: Фольклор

У прямого кругового конуса длина образующей равна 5, а диаметр равен 8.

Найдите наибольшую площадь треугольного сечения, которая может получиться при пересечении конуса плоскостью.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .