ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами. ![]() ![]() Какое наибольшее число точек можно разместить (Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.) ![]() ![]() |
Страница: 1 [Всего задач: 5]
Для каждого натурального n обозначим через s(n) сумму цифр его десятичной записи. Назовём натуральное число m особым, если его нельзя представить в виде m = n + s(n). (Например, число 117 не особое, поскольку 117 = 108 + s(108), а число 121, как нетрудно убедиться, – особое.) Верно ли, что особых чисел существует лишь конечное число?
а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.
(Разумеется, в условии подразумевается, что никакие три точки не должны лежать на одной прямой – без этого ограничения можно разместить сколько угодно точек.)
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |