ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны натуральные a и b, не равные 0 одновременно. Найти d = НОД(a,b) и такие целые x и y, что d = a . x + b . y.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



Задача 76210  (#1.1.14)

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 2-

Написать модифицированный вариант алгоритма Евклида, использующий соотношения НОД(a,b) = НОД(a mod b, b) при a≥b, НОД(a,b) = НОД(a, b mod a) при b≥a.
Прислать комментарий     Решение


Задача 76245  (#1.2.14)

Тема:   [ Многочлены ]
Сложность: 4

(В. Баур, Ф.Штрассен) Дана программа вычисления значения некоторого многочлена P(x1,..., xn), содержащая только команды присваивания. Их правые части — выражения, содержащие сложение, умножение, константы, переменные x1,..., xn и ранее встречавшиеся (в левой части) переменные. Доказать, что существует программа того же типа, вычисляющая все n производных $ \partial$P/$ \partial$x1,...,$ \partial$P/$ \partial$xn, причём общее число арифметических операций не более чем в C раз превосходит число арифметических операций в исходной программе. Константа C не зависит от n.
Прислать комментарий     Решение


Задача 76211  (#1.1.15)

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 2

Даны натуральные a и b, не равные 0 одновременно. Найти d = НОД(a,b) и такие целые x и y, что d = a . x + b . y.
Прислать комментарий     Решение


Задача 76246  (#1.2.15)

Тема:   [ Многочлены ]
Сложность: 2

В массивах a: array[0..k] of integer и b: array[0..l] of integer хранятся коэффициенты двух многочленов степеней k и l. Поместить в массив c: array[0..m] of integer коэффициенты их произведения. (Числа k,l,m — натуральные, m = k + l; элемент массива с индексом i содержит коэффициент при степени i.)
Прислать комментарий     Решение


Задача 76212  (#1.1.16)

Темы:   [ Знакомство с циклами ]
[ Задачи с целыми числами ]
[ НОД и НОК. Алгоритм Евклида ]
Сложность: 2

Решить предыдущую задачу, используя в алгоритме Евклида деление с остатком.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .