ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В плоскости дан треугольник A1A2A3 и прямая l вне его, образующая с продолжением сторон треугольника A1A2, A2A3, A3A1 соответственно углы α3, α1, α2.  Через точки A1, A2, A3 проводятся прямые, образующие с l соответственно углы  π – α1,  π – α2,  π – α3. Доказать, что эти прямые пересекаются в одной точке. Все углы отсчитываются от прямой l в одном направлении.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 77992  (#1)

Темы:   [ Уравнения высших степеней (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 11

Найти корни уравнения   

Прислать комментарий     Решение

Задача 77988  (#2)

Темы:   [ Метод координат на плоскости ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 9,10,11

В плоскости дан треугольник A1A2A3 и прямая l вне его, образующая с продолжением сторон треугольника A1A2, A2A3, A3A1 соответственно углы α3, α1, α2.  Через точки A1, A2, A3 проводятся прямые, образующие с l соответственно углы  π – α1,  π – α2,  π – α3. Доказать, что эти прямые пересекаются в одной точке. Все углы отсчитываются от прямой l в одном направлении.

Прислать комментарий     Решение

Задача 77993  (#3)

Темы:   [ Рекуррентные соотношения ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 11

Пусть  x0 = 109xn = .  Доказать, что  0 < x36 < 10–9.

Прислать комментарий     Решение

Задача 77991  (#4)

Темы:   [ Разные задачи на разрезания ]
[ Куб ]
Сложность: 3
Классы: 10,11

Разрезать куб на три равные пирамиды.
Прислать комментарий     Решение


Задача 77994  (#5)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10

На бесконечной шахматной доске стоит конь. Найти все клетки, куда он может попасть за 2n ходов.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .