ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Стороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на расстояние d = 1 во внешнюю сторону. Доказать, что площадь многоугольника увеличится по крайней мере на 15.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78301  (#1)

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 11

На данной прямой l, проходящей через центр O данной окружности, фиксирована точка C (расположенная внутри окружности — прим. ред.). Точки A и A' расположены на окружности по одну сторону от l так, что углы, образованные прямыми AC и A'C с прямой l, равны. Обозначим через B точку пересечения прямых AA' и l. Доказать, что положение точки B не зависит от точки A.
Прислать комментарий     Решение


Задача 78298  (#2)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Наибольшая или наименьшая длина ]
Сложность: 4-
Классы: 10,11

Как надо расположить числа  1, 2, ..., 2n  в последовательности  a1, a2, ..., a2n,  чтобы сумма  |a1a2| + |a2a3| + ... + |a2n–1a2n| + |a2na1|  была наибольшей?

Прислать комментарий     Решение

Задача 78299  (#3)

Темы:   [ Площадь. Одна фигура лежит внутри другой ]
[ Неравенства с площадями ]
[ Площади криволинейных фигур ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 9,10

Стороны выпуклого многоугольника, периметр которого равен 12, отодвигаются на расстояние d = 1 во внешнюю сторону. Доказать, что площадь многоугольника увеличится по крайней мере на 15.
Прислать комментарий     Решение


Задача 78302  (#4)

Темы:   [ Площадь и ортогональная проекция ]
[ Площадь и объем (задачи на экстремум) ]
[ Прямоугольные параллелепипеды ]
Сложность: 4+
Классы: 11

Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь его проекции на горизонтальную плоскость была наибольшей?
Прислать комментарий     Решение


Задача 78303  (#5)

Темы:   [ Индукция (прочее) ]
[ Турниры и турнирные таблицы ]
[ Ориентированные графы ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.
Доказать, что участников можно так занумеровать, что окажется, что ни один участник не проиграл непосредственно за ним следующему.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .