Страница: 1
2 3 4 5 6 7 >> [Всего задач: 132]
Внутри выпуклого многоугольника расположены две точки.
Докажите, что найдётся четырёхугольник с вершинами в вершинах этого многоугольника, содержащий эти две точки.
|
|
Сложность: 3 Классы: 8,9,10
|
На плоскости дано n>4 точек. Известно, что любые 4 из них
являются вершинами выпуклого четырехугольника.
Докажите, что
эти n точек являются вершинами выпуклого n-угольника.
На плоскости дано
n точек, причем любые четыре
из них являются вершинами выпуклого четырехугольника.
Докажите, что эти точки являются вершинами выпуклого
n-угольника.
На плоскости дано пять точек, причем никакие три из
них не лежат на одной прямой. Докажите, что четыре из этих
точек расположены в вершинах выпуклого четырехугольника.
[Задача Сильвестра]
|
|
Сложность: 3 Классы: 9,10
|
На плоскости взяты
несколько точек так, что на каждой прямой, соединяющей любые две
из них, лежит по крайней мере еще одна точка. Докажите, что все
точки лежат на одной прямой.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 132]