ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Все источники
>>
Книги, журналы
>>
Алфутова Н.Б., Устинов А.В., Алгебра и теория чисел
>>
глава 10. Неравенства
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]
Докажите для положительных значений переменных неравенство ≤ .
Докажите неравенство для положительных значений переменных: (ab + bc + ac)² ≥ 3abc(a + b + c).
Докажите для положительных значений переменной неравенство
a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|