ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли разбить числа 1, 2, 3, ..., 33 на 11 групп, по три числа в каждой, так, чтобы в каждой группе одно из чисел равнялось сумме двух других?

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78766

Темы:   [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8

Можно ли разбить числа 1, 2, 3, ..., 33 на 11 групп, по три числа в каждой, так, чтобы в каждой группе одно из чисел равнялось сумме двух других?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .