ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа x и y, что  0 ≤ ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 79512  (#М1042)

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Турниры и турнирные таблицы ]
Сложность: 4-
Классы: 7,8,9

В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.

Прислать комментарий     Решение

Задача 79523  (#М1043)

Темы:   [ Теория множеств (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения n числа n, n - 50, n + 1987 принадлежали трём разным подмножествам?
Прислать комментарий     Решение


Задача 79520  (#М1044)

Темы:   [ Тригонометрические замены ]
[ Алгебраические неравенства (прочее) ]
[ Тригонометрические неравенства ]
Сложность: 5-
Классы: 10,11

а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два числа x и y, что  0 ≤ ≤ 1.
б) Верно ли, что указанные два числа можно выбрать из любых четырёх чисел?

Прислать комментарий     Решение

Задача 79524  (#М1045)

Темы:   [ Процессы и операции ]
[ Наибольшая или наименьшая длина ]
[ Геометрическая прогрессия ]
Сложность: 5-
Классы: 9,10

В некотором царстве, территория которого имеет форму квадрата со стороной 2 км, царь решает созвать всех жителей к 7 ч вечера к себе во дворец на бал. Для этого он в полдень посылает с поручением гонца, который может передать любое указание любому жителю, который в свою очередь может передать любое указание любому другому жителю и т.д. Каждый житель до поступления указания находится в известном месте (у себя дома) и может передвигаться со скоростью 3 км/ч в любом направлении (по прямой). Доказать, что царь может организовать оповещение так, чтобы все жители успели прийти к началу бала.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .