Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 202]
|
|
Сложность: 3- Классы: 6,7,8
|
Двое по очереди ломают шоколадку 6×8. За ход разрешается сделать прямолинейный разлом любого из кусков вдоль углубления. Проигрывает тот, кто не сможет сделать ход. Кто выиграет в этой игре?
|
|
Сложность: 3- Классы: 7,8,9
|
30 команд участвуют в розыгрыше первенства по футболу.
Доказать, что в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое число матчей.
На клетчатой бумаге нарисован прямоугольник 2 × 3. Отметьте вершины квадрата, стороны которого равны диагонали этого прямоугольника (не используя чертежных инструментов).
Найдите все натуральные m и n, для которых m! + 12 = n².
|
|
Сложность: 3- Классы: 6,7,8
|
Игра с «доминошками». Дана клетчатая доска 10×10. За ход разрешается покрыть любые две соседние клетки доминошкой (прямоугольником размером 1×2) так, чтобы доминошки не перекрывались. Проигрывает тот, кто не может сделать ход.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 202]