ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Разрезать равнобедренный прямоугольный треугольник на несколько подобных ему треугольников, так чтобы любые два из них были различны по размерам. Решение |
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
a1, a2, a3, ... – возрастающая последовательность натуральных чисел. Известно, что
aak = 3k для любого k.
Разрезать равнобедренный прямоугольный треугольник на несколько подобных ему треугольников, так чтобы любые два из них были различны по размерам.
Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел: (8, 9), (288, 289).
Около остроугольного треугольника ABC описана окружность с центром O. Перпендикуляры, опущенные из точки O на стороны треугольника, продолжены до пересечения с окружностью в точках K, M и P. Докажите, что где Q – центр вписанной окружности треугольника ABC.
F(x) – возрастающая функция, определённая на отрезке [0, 1]. Известно, что область её значений принадлежит отрезку [0, 1]. Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.)
Страница: << 1 2 3 4 5 >> [Всего задач: 23] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|