Страница: 1 [Всего задач: 5]
Задача
97992
(#М1166)
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что a²pq + b²qr + c²rp ≤ 0, если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию p + q + r = 0.
Задача
97993
(#М1167)
|
|
Сложность: 4- Классы: 8,9,10
|
Числа 1, 2, 3, ..., N записываются в строчку в таком порядке, что если
где-то (не на первом месте) записано число i, то где-то слева от него
встретится хотя бы одно из чисел i + 1 и i – 1. Сколькими способами это можно сделать?
Задача
97994
(#М1168)
|
|
Сложность: 4 Классы: 9,10
|
В стране 1988 городов и 4000 дорог.
Докажите, что можно указать кольцевой маршрут, проходящий не более, чем через 20 городов (каждая дорога соединяет два города).
Задача
108032
(#М1169)
|
|
Сложность: 4- Классы: 8,9
|
Пусть M – внутренняя точка прямоугольника ABCD, а S – его площадь. Докажите, что S ≤ AM·CM + BM·DM.
Задача
97985
(#М1170)
|
|
Сложность: 4- Классы: 8,9,10
|
Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что
а) P(n) ≥ n – 3;
б) P(n) ≤ 2n – 7;
в) P(n) ≤ 2n – 10 при n ≥ 13.
Страница: 1 [Всего задач: 5]