ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 108009  (#1)

Темы:   [ Треугольник (построения) ]
[ Подерный (педальный) треугольник ]
[ Правильный (равносторонний) треугольник ]
[ ГМТ и вписанный угол ]
[ Метод ГМТ ]
[ Подобные треугольники (прочее) ]
[ Теорема синусов ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 8,9

Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.

Прислать комментарий     Решение

Задача 98276  (#2)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Рекуррентные соотношения (прочее) ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9

Последовательность определяется так: первые её члены – 1, 2, 3, 4, 5. Далее каждый следующий (начиная с 6-го) равен произведению всех предыдущих членов минус 1. Докажите, что сумма квадратов первых 70 членов последовательности равна их произведению.

Прислать комментарий     Решение

Задача 108008  (#3)

Темы:   [ Вспомогательная окружность ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9

AK – биссектриса треугольника ABC, P и Q – точки на двух других биссектрисах (или на их продолжениях) такие, что  PA = PK  и  QA = QK.
Докажите, что  ∠PAQ = 90° – ½ ∠A.

Прислать комментарий     Решение

Задача 98278  (#4)

Темы:   [ Математическая логика (прочее) ]
[ Теория алгоритмов ]
[ Ориентированные графы ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

В компанию из n человек пришёл журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?"
  а) Может ли журналист установить, кто из компании есть Z, задав менее n вопросов?
  б) Найдите наименьшее количество вопросов, достаточное для того, чтобы наверняка найти Z, и докажите, что меньшим числом вопросов обойтись нельзя.
(Все отвечают на вопросы правдиво. Одному человеку можно задавать несколько вопросов.)

Прислать комментарий     Решение

Задача 98279  (#5)

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Невыпуклые многоугольники ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 8,9

а) Существуют ли два равных семиугольника, все вершины которых совпадают, но никакие стороны не совпадают?
б) А три таких семиугольника?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .