ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Автобусный билет будем считать счастливым, если между его цифрами можно в нужных местах расставить знаки четырёх арифметических действий и скобки так, чтобы значение полученного выражения равнялось 100. Является ли счастливым билет N123456?
![]() ![]() Карлсону подарили пакет с конфетами: шоколадными и карамельками. За первые 10 минут Карлсон съел 20% всех конфет, причем 25% из них составляли карамельки. После этого Карлсон съел еще три шоколадные конфеты, и доля карамелек среди съеденных Карлсоном конфет понизилась до 20%. Сколько конфет было в подаренном Карлсону пакете? ![]() ![]() ![]() Докажите, что существует бесконечно много таких троек чисел n – 1, n, n + 1, что: ![]() ![]() |
Страница: 1 2 >> [Всего задач: 6]
Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины
которых лежат на окружности.
На сторонах треугольника ABC во внешнюю сторону построены квадраты ABMN, BCKL, ACPQ. На отрезках NQ и PK построены квадраты NQZT и PKXY. Разность площадей квадратов ABMN и BCKL равна d. Найдите разность площадей квадратов NQZT и PKXY
Докажите, что существует бесконечно много таких троек чисел n – 1, n, n + 1, что:
В углу шахматной доски размером m×n полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
Страница: 1 2 >> [Всего задач: 6] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |