ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится? б) Тот же вопрос для четырёхзначных чисел. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных?
Существуют ли такие целые числа x, y и z, для которых выполняется равенство: (x – y)³ + (y – z)³ + (z – x)³ = 2011?
б) Тот же вопрос для четырёхзначных чисел.
Целые числа x, y и z таковы, что (x – y)(y – z)(z – x) = x + y + z. Докажите, что число x + y + z делится на 27.
Точки K и L – середины сторон АВ и ВС правильного шестиугольника АВСDEF. Отрезки KD и LE пересекаются в точке М. Площадь треугольника DEM равна 12. Найдите площадь четырёхугольника KBLM.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|