Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 29]
Задача
30755
(#006)
|
|
Сложность: 3 Классы: 7,8
|
В таблице 8×8 одна из клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
Задача
30756
(#007)
|
|
Сложность: 3+ Классы: 7,8
|
В таблице 3×3 одна из угловых клеток закрашена чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
Задача
30757
(#008)
|
|
Сложность: 3+ Классы: 7,8,9
|
В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.
Задача
30758
(#009)
|
|
Сложность: 3 Классы: 7,8
|
На доске написаны числа 1, 2, 3, ..., 1989. Разрешается стереть любые два числа и написать вместо них разность этих чисел.
Можно ли добиться того, чтобы все числа на доске стали нулями?
Задача
97848
(#010)
|
|
Сложность: 4- Классы: 7,8,9
|
На острове Серобуромалин обитают 13 серых, 15 бурых и 17 малиновых хамелеонов. Если встречаются два хамелеона разного цвета, то они одновременно меняют свой цвет на третий (серый и бурый становятся оба малиновыми и т.п.). Может ли случиться так, что через некоторое время все хамелеоны будут одного цвета?
Страница:
<< 1 2
3 4 5 6 >> [Всего задач: 29]