ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1255]      



Задача 58107  (#02.109-110)

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Формула включения-исключения ]
[ Сочетания и размещения ]
[ Перегруппировка площадей ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

   а) В квадрате площади 6 расположены три многоугольника площади 3. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1.
   б) В квадрате площади 5 расположено девять многоугольников площади 1. Докажите, что среди них найдутся два многоугольника,
площадь общей части которых не меньше 1/9.

Прислать комментарий     Решение

Задача 60445  (#02.111)

Темы:   [ Формула включения-исключения ]
[ Принцип Дирихле (площадь и объем) ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 10,11

В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся
  а) две фигуры, площадь общей части которых не меньше 3/20;
  б) две фигуры, площадь общей части которых не меньше ⅕;
  в) три фигуры, площадь общей части которых не меньше 1/20.

Прислать комментарий     Решение

Задача 60446  (#02.112)

Темы:   [ Покрытия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Докажите, что в условии задач 60445 б) и в) числа 1/5 и 1/20 нельзя заменить большими величинами. >

Прислать комментарий     Решение

Задача 60447  (#02.113)

Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Сколько последовательностей  {a1, a2, ..., a2n},  состоящих из единиц и минус единиц, обладают тем свойством, что  a1 + a2 + ... + a2n = 0,  а все частичные суммы  a1,  a1 + a2,  ...,  a1 + a2 + ... + a2n  неотрицательны?

Прислать комментарий     Решение

Задача 60448  (#02.114)

Темы:   [ Числа Каталана ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4
Классы: 8,9,10,11

Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .