ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 1255]      



Задача 60993  (#06.070)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Алгоритм Евклида ]
Сложность: 4
Классы: 9,10,11

Последовательность a0, a1, a2, ... задана условиями  a0 = 0,  an+1 = P(an)  (n ≥ 0),  где P(x) – многочлен с целыми коэффициентами,  P(x) > 0  при  x ≥ 0.
Докажите, что для любых натуральных m и k  (am, ak) = a(m, k).

Прислать комментарий     Решение

Задача 60994  (#06.071)

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 4
Классы: 9,10,11

Решите систему

$\displaystyle \left\{\vphantom{
\begin{array}l
x^6-x^5+x^4-x^3+5x^2=5,\\  x^6-2x^5+3x^4-4x^3+2x=0.
\end{array}
}\right.$$\displaystyle \begin{array}l
x^6-x^5+x^4-x^3+5x^2=5,\\  x^6-2x^5+3x^4-4x^3+2x=0.
\end{array}$


Прислать комментарий     Решение

Задача 60995  (#06.072)

Темы:   [ Методы решения задач с параметром ]
[ Исследование квадратного трехчлена ]
Сложность: 3+
Классы: 8,9,10,11

При каком положительном значении p уравнения  3x² – 4px + 9 = 0  и  x² – 2px + 5 = 0  имеют общий корень?

Прислать комментарий     Решение

Задача 60996  (#06.073)

Темы:   [ Многочлены (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Найдите такие многочлены P(x) и Q(x), что  (x + 1)P(x) + (x4 + 1)Q(x) = 1.

Прислать комментарий     Решение

Задача 60997  (#06.074)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Многочлены (прочее) ]
Сложность: 3+
Классы: 8,9,10

При помощи метода неопределенных коэффициентов найдите такие линейные функции P(x) и Q(x), чтобы выполнялось равенство
P(x)(x² – 3x + 2) + Q(x)(x² + x + 1) = 21.

Прислать комментарий     Решение

Страница: << 139 140 141 142 143 144 145 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .