Страница:
<< 1 2 [Всего задач: 8]
Пусть p – полупериметр остроугольного треугольника ABC,
q – полупериметр треугольника, образованного основаниями его высот.
Докажите, что p : q = R : r, где R и r – радиусы описанной и вписанной окружностей треугольника ABC.
На сторонах остроугольного треугольника ABC взяты точки A1, B1, C1 так, что отрезки AA1, BB1, CC1 пересекаются
в точке H.
Докажите, что AH·A1H = BH·B1H = CH·C1H
тогда и только тогда, когда H – точка пересечения высот треугольника ABC.
а) Докажите, что высоты AA1, BB1 и CC1 остроугольного треугольника ABC делят углы треугольника A1B1C1 пополам.
б) На сторонах AB, BC и CA остроугольного треугольника ABC взяты точки C1, A1 и B1 соответственно.
Докажите, что если ∠B1A1C = ∠BA1C1, ∠A1B1C = ∠AB1C1 и ∠A1C1B = ∠AC1B1, то точки A1, B1 и C1 являются основаниями высот треугольника ABC.
Страница:
<< 1 2 [Всего задач: 8]