Страница:
<< 1 2 [Всего задач: 9]
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
O - центр описанной окружности четырехугольника
ABCD.
Докажите, что расстояние от точки
O до стороны
AB
равно половине длины стороны
CD.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
P - точка пересечения диагоналей.
Докажите, что прямая, проведенная из точки
P
перпендикулярно
BC, делит сторону
AD пополам.
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны.
P - точка пересечения диагоналей.
Докажите, что середины сторон четырехугольника
ABCD
и проекции точки
P на стороны лежат на одной окружности.
а)
ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Через вершины
A,
B,
C и
D проведены касательные
к описанной окружности. Докажите, что образованный ими четырехугольник
вписанный.
б) Четырехугольник
KLMN вписанный и описанный одновременно;
A и
B — точки касания вписанной окружности со сторонами
KL
и
LM. Докажите, что
AK . BM =
r2, где
r — радиус вписанной
окружности.
Страница:
<< 1 2 [Всего задач: 9]