ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 97]      



Задача 61130  (#07.066)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 10,11

Вычислите суммы:

  а)  1 + a cos φ + ... + ak cos kφ + ... ( |a| < 1);

  б)  a sin φ + ... + ak sin kφ + ... ( |a| < 1);

  в)  

  г)  

Решение

  а), б) Пусть  z = a(cos φ + i sin φ).  Искомые суммы – вещественная и мнимая части суммы


  в), г) Пусть  z = cos φ + i sin φ.  Тогда  
Искомые суммы – вещественная и мнимая части выражения

 

Ответ

а)     б)     в)     г)  

Прислать комментарий

Задача 61131  (#07.067)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4
Классы: 10,11

Найдите предел  

Подсказка

Если  z = ½ (cos x + i sin x),  то выражение в скобках равно  Re(1 + z + z² + ... + zn).

Ответ

Прислать комментарий

Задача 61132  (#07.068)

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 3
Классы: 9,10,11

Пусть z1, ..., zn – отличные от нуля комплексные числа, лежащие в полуплоскости  α < arg z < α + π.  Докажите, что
  а)  z1 + ... + zn ≠ 0;
  б)  1/z1 + ... + 1/zn ≠ 0.

Подсказка

а) Все векторы z1, ..., zn имеют положительную проекцию на луч  arg z = α + π/2.
б) Все числа  1/z1, ..., 1/zn  лежат в полуплоскости  π – α < arg z < 2π – α.

Прислать комментарий

Задача 61133  (#07.069)

Темы:   [ Геометрия комплексной плоскости ]
[ Выпуклые многоугольники ]
Сложность: 3+
Классы: 9,10,11

Пусть z1, z2, ..., zn – вершины выпуклого многоугольника. Найдите геометрическое место точек  z = λ1z1 + λ2z2 + ... + λnzn,  где λ1, λ2, ..., λn – такие действительные положительные числа, что  λ1 + λ2 + ... + λn = 1.

Ответ

Это многоугольник с указанными вершинами.

Прислать комментарий

Задача 61134  (#07.070)

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
Сложность: 4
Классы: 9,10,11

Докажите, что корни уравнения    где a, b, c – попарно различные комплексные числа, лежат внутри треугольника с вершинами в точках a, b, c, или на его сторонах (в случае вырожденного треугольника).

Решение

Если точка z лежит вне треугольника abc, то векторы  z – a,  z – b,  z – c  располагаются в некоторой полуплоскости. Сумма их обратных величин не может равняться нулю согласно задаче 61132 б).

Прислать комментарий

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 97]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .