ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



Задача 60970  (#06.047)

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Докажите, что многочлен  P(x) = (x + 1)6x6 – 2x – 1  делится на  x(x + 1)(2x + 1).

Прислать комментарий     Решение

Задача 60971  (#06.048)

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 8,9,10,11

Многочлен P(x) дает остаток 2 при делении на  x – 1,  и остаток 1 при делении на  x – 2.
Какой остаток дает P(x) при делении на многочлен  (x – 1)(x – 2)?

Прислать комментарий     Решение

Задача 60972  (#06.049)

Темы:   [ Теорема Безу. Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 8,9,10,11

Найдите необходимое и достаточное условие для того, чтобы выражение  x³ + y³ + z³ + kxyz  делилось на  x + y + z.

Прислать комментарий     Решение

Задача 60973  (#06.050)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10,11

При каких n многочлен  1 + x² + x4 + ... + x2n–2  делится на  1 + x + x2 + ... + xn–1?

Прислать комментарий     Решение

Задача 60974  (#06.051)

 [Китайская теорема об остатках для многочленов]
Темы:   [ Китайская теорема об остатках ]
[ Многочлены (прочее) ]
Сложность: 4
Классы: 9,10,11

Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены.
Докажите, что существует ровно один такой многочлен p(x), что
    p(x) ≡ a1(x) (mod m1(x)),
      ...
    p(x) ≡ an(x) (mod mn(x))
и  deg p(x) < deg m1(x) + ... + deg mn(x).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .