Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 55]
Задача
60769
(#04.143)
|
|
Сложность: 3+ Классы: 9,10,11
|
Решите уравнения а) φ(5x) = 100; б) φ(7x) = 294; в) φ(3x5y) = 600.
Задача
60770
(#04.144)
|
|
Сложность: 3+ Классы: 9,10,11
|
Известно, что (m, n) > 1. Что больше φ(mn) или φ(m)φ(n)? Определение функции φ(n) см. в задаче 60758.
Задача
60771
(#04.145)
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть τ(n) – количество положительных делителей натурального числа n. Решите уравнение a = 2τ(a).
Задача
60772
(#04.146)
|
|
Сложность: 3 Классы: 8,9
|
Докажите, что если n > 2, то число всех правильных несократимых дробей со знаменателем n чётно.
Задача
60773
(#04.147)
|
|
Сложность: 4- Классы: 8,9,10
|
Найдите сумму всех правильных несократимых дробей со знаменателем n.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 55]