ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 32040  (#06)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9,10

Автобусные билеты имеют номера от 000000 до 999999. Билет называется счастливым, если сумма первых трёх цифр его номера равна сумме последних трёх его цифр. Докажите, что:
  а) число всех счастливых билетов чётно;
  б) сумма номеров всех счастливых билетов делится на 999.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .