Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 225]
|
|
Сложность: 3 Классы: 7,8,9
|
На плоскости даны 9 точек (см. рисунок). Перечеркните их все четырьмя прямыми отрезками, не отрывая карандаша от бумаги.
|
|
Сложность: 3 Классы: 7,8,9
|
а) Леша поднимается по лестнице из 10 ступенек. За один раз он прыгает вверх либо на одну ступеньку, либо на две ступеньки. Сколькими способами Леша может подняться по лестнице?
б) При спуске с той же лестницы Леша перепрыгивает через некоторые ступеньки (может даже через все 10). Сколькими способами он может спуститься по этой лестнице?
|
|
Сложность: 3 Классы: 7,8,9
|
На доске написаны числа 1 и 2. Каждый день научный консультант Выбегалло заменяет два написанных числа на их среднее арифметическое и среднее гармоническое.
а) Однажды одним из написанных чисел (каким неизвестно) оказалось 941664/665857. Каким в этот момент было другое число?
б) Будет ли когда-нибудь написано число 35/24?
|
|
Сложность: 3 Классы: 7,8,9
|
У Ивана-царевича есть два волшебных меча. Первым он может отрубить Змею
Горынычу 21 голову. Вторым – 4 головы, но при этом у Змея Горыныча
отрастает 2006 голов. Может ли Иван отрубить Змею Горынычу все головы, если в
самом начале у него было 100 голов? (Если, например, у Змея Горыныча осталось лишь три головы, то рубить их ни тем, ни другим мечом нельзя.)
|
|
Сложность: 3 Классы: 7,8,9
|
На столе стоят 13 перевёрнутых стаканов. Разрешается одновременно переворачивать любые два стакана.
Можно ли добиться того, чтобы все стаканы стояли правильно?
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 225]