ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 73739  (#М204)

Темы:   [ Дискретное распределение ]
[ Десятичная система счисления ]
[ Показательные неравенства ]
Сложность: 5+
Классы: 10,11

Назовём натуральное число хорошим, если в его десятичной записи встречаются подряд цифры 1, 9, 7, 3, и плохим — в противном случае. (Например, число 197 639 917 — плохое, а 116 519 732 — хорошее.) Докажите, что существует такое натуральное число n, что среди всех n-значных чисел (от 10n – 1 до 10n – 1) больше хороших, чем плохих.

Постарайтесь найти возможно меньшее такое n.
Прислать комментарий     Решение


Задача 73740  (#М205)

Темы:   [ Линейная и полилинейная алгебра ]
[ Системы линейных уравнений ]
[ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
[ Теория множеств (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 9,10,11

24 студента решали 25 задач. У преподавателя есть таблица размером 24×25, в которой записано, кто какие задачи решил. Оказалось, что каждую задачу решил хотя бы один студент. Докажите, что
  а) можно отметить некоторые задачи "галочкой" так, что каждый из студентов решил чётное число (в частности, может быть, нуль) отмеченных задач;
  б) можно отметить некоторые из задач знаком "+", а некоторые из остальных – знаком "–" и приписать каждой задаче некоторое натуральное число баллов так, чтобы каждый студент набрал поровну баллов за задачи, отмеченные знаками "+" и "–".
Прислать комментарий     Решение


Задача 73741  (#М206)

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10,11

Дана бесконечная последовательность цифр. Докажите, что для любого натурального числа n, взаимно простого с числом 10, можно указать такую группу стоящих подряд цифр последовательности, что записываемое этими цифрами число делится на n.

Прислать комментарий     Решение

Задача 73742  (#М207)

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Наибольшая или наименьшая длина ]
[ Поворот помогает решить задачу ]
[ Подобные треугольники (прочее) ]
Сложность: 5+
Классы: 9,10,11

Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).

Прислать комментарий     Решение

Задача 73743  (#М208)

Темы:   [ Средние величины ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1,  ½ (x1 + x2),  ⅓ (x1 + x2 + x3),  ...,  1/10 (x1 + x2 + ... + x10)?
в) Каков будет ответ, если чисел не 10, а n?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .