Страница: 1 [Всего задач: 2]
Задача
52489
(#М1031)
|
|
Сложность: 3+ Классы: 8,9
|
На плоскости даны прямая l и две точки A и B по одну сторону от неё. На прямой l выбраны точка M, сумма расстояний от которой до точек A и B наименьшая, и точка N, для которой AN = BN. Докажите, что точки A, B, M, N лежат на одной
окружности.
Задача
74569
(#М1034)
|
|
Сложность: 4+ Классы: 7,8,9,10
|
Прямоугольная шоколадка размером 5×10 разбита продольными и поперечными углублениями на 50 квадратных долек. Двое играют в такую игру. Начинающий разламывает шоколадку по некоторому углублению на две прямоугольные части и кладёт на стол полученные части. Затем игроки по очереди делают аналогичные операции: каждый раз очередной игрок разламывает одну из частей на две части. Тот, кто первый отломит квадратную дольку (без углублений),
а) проигрывает; б) выигрывает. Кто из играющих может обеспечить себе выигрыш: начинающий или его партнёр?
Страница: 1 [Всего задач: 2]