ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 3]      



Задача 76426  (#1)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3
Классы: 8,9

Дана окружность и на ней 3 точки M, N, P, в которых пересекаются с окружностью (при продолжении) высота, биссектриса и медиана, выходящие из одной вершины вписанного треугольника. Построить этот треугольник.
Прислать комментарий     Решение


Задача 76427  (#2)

Тема:   [ Задачи на максимум и минимум (прочее) ]
Сложность: 3+
Классы: 10,11

На поверхности куба найти точки, из которых диагональ видна под наименьшим углом. Доказать, что из остальных точек поверхности куба диагональ видна под большим углом, чем из найденных.
Прислать комментарий     Решение


Задача 76428  (#3)

Тема:   [ Прямые и плоскости в пространстве (прочее) ]
Сложность: 4
Классы: 10,11

В двух различных плоскостях лежат два треугольника: ABC и A1B1C1. Прямая AB пересекается с прямой A1B1, прямая BC — с прямой B1C1, прямая CA — с прямой C1A1. Доказать, что прямые AA1, BB1 и CC1 или все три пересекаются в одной точке, или параллельны друг другу.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .