Страница: 1 [Всего задач: 1]
На квадратном поле размерами
99×99, разграфленном на клетки размерами
1×1, играют двое. Первый игрок ставит крестик на центр поля; вслед за
этим второй игрок может поставить нолик на любую из восьми клеток, окружающих
крестик первого игрока. После этого первый ставит крестиктна любое из полей рядом с уже занятыми и т.д. Первый игрок выигрывает, если ему удастся
поставить крестик на любую угловую клетку. Доказать, что при любой игре второго
игрока первый всегда может выиграть.
Страница: 1 [Всего задач: 1]