Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 40]
На квадратный лист бумаги со стороной a посадили несколько клякс, площадь каждой из которых не больше 1. Оказалось, что каждая прямая, параллельная
сторонам листа, пересекает не более одной кляксы. Докажите, что суммарная площадь клякс не больше a.
В шестиугольнике ABCDEF, вписанном в окружность, AB = BC, CD = DE, EF = FA.
Докажите, что площадь треугольника BDF равна половине площади шестиугольника.
Четырёхугольник ABCD – ромб. На стороне BC взята точка P. Через точки A, B и P проведена окружность, которая пересекается с прямой BD ещё раз в точке Q. Через точки C, P и Q проведена окружность, которая пересекается с BD ещё раз в точке R. Докажите, что точки A, R и P лежат на одной прямой.
|
|
Сложность: 4 Классы: 7,8,9
|
Имеется прямоугольная доска m×n, разделённая на клетки 1×1. Кроме того, имеется много косточек домино размером 1×2. Косточки уложены на доску, так что каждая косточка занимает две клетки. Доска заполнена не целиком, но так, что сдвинуть косточки невозможно (доска имеет бортики, так что косточки не могут выходить за пределы доски). Докажите, что число непокрытых клеток
а) меньше mn/4;
б) меньше mn/5.
|
|
Сложность: 4 Классы: 8,9,10
|
Правильный шестиугольник разрезан на N равновеликих параллелограммов. Доказать, что N делится на 3.
Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 40]