Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 42]
Докажите, что у выпуклого 10n-гранника найдётся n граней с одинаковым числом сторон.
Разбойники Хапок и Глазок делят кучу из 100 монет. Хапок захватывает из
кучи пригоршню монет, а Глазок, глядя на пригоршню, решает, кому из двоих она
достается. Так продолжается, пока кто-то из них не получит девять пригоршней, после чего другой забирает все оставшиеся монеты (дележ может закончиться и тем, что монеты будут разделены прежде, чем кто-то получит девять пригоршней). Хапок может захватить в пригоршню сколько угодно монет. Какое наибольшее число монет он может гарантировать себе независимо от действий Глазка?
|
|
Сложность: 4 Классы: 9,10,11
|
В однокруговом шахматном турнире назовём партию неправильной, если выигравший её шахматист в итоге набрал очков меньше, чем проигравший.
Докажите, что неправильные партии составляют меньше ¾ общего числа партий в турнире.
|
|
Сложность: 4 Классы: 10,11
|
Найдите максимальное число N, для которого существуют такие N последовательных натуральных чисел, что сумма цифр первого числа делится на 1, сумма цифр второго числа – на 2, сумма цифр третьего числа – на 3, ..., сумма цифр N-го числа – на N.
|
|
Сложность: 4+ Классы: 10,11
|
Внутри прямоугольного листа бумаги вырезали n прямоугольных дыр со сторонами, параллельными краям листа. На какое наименьшее число прямоугольных частей можно гарантированно разрезать этот дырявый лист? (Дыры не перекрываются и не соприкасаются.)
Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 42]