ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 381]      



Задача 66540

Тема:   [ Дроби (прочее) ]
Сложность: 2
Классы: 6

а) Впишите в клеточки четыре различные цифры, чтобы произведение дробей равнялось 20/21.

Решите эту задачу для трёх других арифметических действий:
б) деления;
в) вычитания;
г) сложения.
Прислать комментарий     Решение


Задача 66546

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 6,7

Будем называть флажком пятиугольник, вершины которого — вершины некоторого квадрата и его центр. Разрежьте фигуру ниже справа на флажки (не обязательно одинаковые).

Прислать комментарий     Решение

Задача 103729

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 6,7

В парламенте некоторой страны две палаты, имеющие равное число депутатов. В голосовании по важному вопросу приняли участие все депутаты, причём воздержавшихся не было. Когда председатель сообщил, что решение принято с преимуществом в 23 голоса, лидер оппозиции заявил, что результаты голосования сфальсифицированы. Как он это понял?

Прислать комментарий     Решение

Задача 103738

Тема:   [ Объединение, пересечение и разность множеств ]
Сложность: 2
Классы: 6,7

Среди математиков каждый седьмой — философ, а среди философов каждый девятый — математик. Кого больше: философов или математиков?

Прислать комментарий     Решение


Задача 103740

Темы:   [ Арифметические действия. Числовые тождества ]
[ Ребусы ]
Сложность: 2
Классы: 6

Автобусный билет будем считать счастливым, если между его цифрами можно в нужных местах расставить знаки четырёх арифметических действий и скобки так, чтобы значение полученного выражения равнялось 100. Является ли счастливым билет N123456?

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .