ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 165 166 167 168 169 170 171 >> [Всего задач: 7526]      



Задача 34949

Тема:   [ Стереометрия (прочее) ]
Сложность: 3
Классы: 10,11

Через каждую вершину тетраэдра проведена плоскость, содержащая центр окружности, описанной около противоположной грани, и перпендикулярная противоположной грани. Докажите, что эти 4 плоскости пересекаются в одной точке.
Прислать комментарий     Решение


Задача 34961

Темы:   [ Геометрические неравенства (прочее) ]
[ Скалярное произведение. Соотношения ]
Сложность: 3
Классы: 9,10,11

Дано 8 действительных чисел: a,b,c,d,,e,f,g,h. Докажите, что хотя бы одно из 6 чисел ac+bd, ae+bf, ag+bh, ce+df, cg+dh, eg+fh неотрицательно.
Прислать комментарий     Решение


Задача 34969

Тема:   [ Замощения костями домино и плитками ]
Сложность: 3
Классы: 7,8,9

Можно ли из 18 доминошек 1×2 выложить квадрат 6×6 так, чтобы при этом не получалось ни одного прямого "шва", соединяющего противоположные стороны квадрата и идущего по краям плиток?

Прислать комментарий     Решение

Задача 34971

Темы:   [ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10

Найдите все целые решения уравнения  yk = x² + x,  где k – фиксированное натуральное число, большее 1.

Прислать комментарий     Решение

Задача 34979

Темы:   [ Средние величины ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8

Имеется набор натуральных чисел (известно, что чисел не меньше семи), причём сумма каждых семи из них меньше 15, а сумма всех чисел из набора равна 100. Какое наименьшее количество чисел может быть в наборе?

Прислать комментарий     Решение

Страница: << 165 166 167 168 169 170 171 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .