Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 39]
|
|
Сложность: 3- Классы: 7,8,9
|
Незнайка утверждает, что существует восемь таких последовательных натуральных чисел, что в разложение их на простые множители каждый множитель входит в нечётной степени (например, два таких последовательных числа: 23 = 231 и 24 = 2³·31). Прав ли он?
|
|
Сложность: 3- Классы: 9,10,11
|
Прямая пересекает график функции y = x² в точках
с абсциссами x1 и x2, а ось абсцисс –
в точке с абсциссой x3. Докажите, что .
|
|
Сложность: 3- Классы: 10,11
|
Длина ребра правильного тетраэдра равна a. Через одну из вершин тетраэдра проведено треугольное сечение.
Докажите, что периметр P этого треугольника удовлетворяет неравенству P > 2a.
|
|
Сложность: 3 Классы: 7,8,9
|
Диагонали параллелограмма ABCD пересекаются в точке O. На продолжении стороны AB за точку B отмечена такая точка M, что MC = MD.
Докажите, что ∠AMO = ∠MAD.
|
|
Сложность: 3 Классы: 7,8,9
|
В трапеции ABCD основание AD в четыре раза больше чем BC. Прямая, проходящая через середину диагонали BD и параллельная AB, пересекает сторону CD в точке K. Найдите отношение DK : KC.
Страница:
<< 2 3 4 5 6
7 8 >> [Всего задач: 39]