ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 116673  (#2)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теорема Пифагора (прямая и обратная) ]
[ Обход графов ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Кузнечик умеет прыгать только ровно на 50 см. Он хочет обойти 8 точек, отмеченных на рисунке (сторона клетки равна 10 см). Какое наименьшее количество прыжков ему придётся сделать? (Разрешается посещать и другие точки плоскости, в том числе не узлы сетки. Начинать и заканчивать можно в любых точках.)

Прислать комментарий     Решение

Задача 116685  (#2)

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

В ряд лежит чётное число груш. Массы любых двух соседних груш отличаются не более чем на 1 г. Докажите, что можно все груши разложить по две в одинаковые пакеты и выложить пакеты в ряд так, чтобы массы любых двух соседних пакетов тоже отличались не более чем на 1 г.

Прислать комментарий     Решение

Задача 116691  (#2)

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 10

В клетках таблицы n×n стоят плюсы и минусы. За один ход разрешается в произвольной строке или в произвольном столбце поменять все знаки на противоположные. Известно, что из начальной расстановки можно получить такую, при которой во всех ячейках стоят плюсы. Докажите, что этого можно добиться не более чем за n ходов.

Прислать комментарий     Решение

Задача 116697  (#2)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Исследование квадратного трехчлена ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 11

Для заданных значений a, b, c и d оказалось, что графики функций    и    имеют ровно одну общую точку. Докажите, что графики функций    и    также имеют ровно одну общую точку.

Прислать комментарий     Решение

Задача 116703  (#2)

Темы:   [ Наглядная геометрия в пространстве ]
[ Принцип Дирихле (углы и длины) ]
[ Частные случаи тетраэдров (прочее) ]
Сложность: 3+
Классы: 11

На плоской горизонтальной площадке стоят пять прожекторов, каждый из которых испускает лазерный луч под одним из двух острых углов α или β к площадке и может вращаться лишь вокруг вертикальной оси, проходящей через вершину луча. Известно, что любые четыре из этих прожекторов можно повернуть так, что все четыре испускаемых ими луча пересекутся в одной точке. Обязательно ли можно так повернуть все пять прожекторов, чтобы все пять лучей пересеклись в одной точке?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .