Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]
|
|
Сложность: 3+ Классы: 7,8,9
|
На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?
|
|
Сложность: 4 Классы: 7,8,9
|
В параллелограмме ABCD опустили перпендикуляр BH на сторону AD. На отрезке BH отметили точку M, равноудалённую от точек C и D. Пусть точка K – середина стороны AB. Докажите, что угол MKD прямой.
Из плоскости вырезали равносторонний треугольник.
Можно ли оставшуюся часть плоскости замостить треугольниками, любые два из которых подобны, но не гомотетичны?
В треугольнике ABC высоты или их продолжения пересекаются в точке H, а R – радиус его описанной окружности.
Докажите, что если ∠A ≤ ∠B ≤ ∠C, то AH + BH ≥ 2R.
Учитель написал на доске в алфавитном порядке все возможные 2n слов, состоящих из n букв А или Б. Затем он заменил каждое слово на произведение n множителей, исправив каждую букву А на x, а каждую букву Б – на (1 – x), и сложил между собой несколько первых из этих многочленов от x. Докажите, что полученный многочлен представляет собой либо постоянную, либо возрастающую на отрезке [0, 1] функцию от x.
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]