Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 69]
|
|
Сложность: 3 Классы: 8,9,10
|
Две окружности пересекаются в точках P и Q. Прямая, пересекающая отрезок PQ, последовательно пересекает эти окружности в точках A, B, C и D.
Докажите, что ∠APB = ∠CQD.
|
|
Сложность: 3 Классы: 8,9,10
|
В круговом шахматном турнире участвует 9 мальчиков и 3 девочки (каждый играет с каждым один раз, победа – 1 очко; ничья – 0,5; поражение – 0). Может ли в итоге оказаться, что сумма очков, набранных всеми мальчиками, будет равна сумме очков, набранных всеми девочками?
|
|
Сложность: 3 Классы: 8,9,10
|
Докажите, что если а > 0, b > 0, c > 0 и аb + bc + ca ≥ 12, то a + b + c ≥ 6.
|
|
Сложность: 3 Классы: 8,9,10
|
Известно, что модули корней каждого из двух квадратных трёхчленов x² + ax + b и x² + cx + d меньше 10. Может ли трёхчлен иметь корни, модули которых не меньше 10?
|
|
Сложность: 3 Классы: 8,9,10
|
В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 69]