Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 69]
Толя выложил в ряд 101 монету достоинством 1, 2 и 3 копейки. Оказалось, что между каждыми двумя копеечными монетами лежит хотя бы одна монета, между каждыми двумя двухкопеечными монетами лежат хотя бы две монеты, а между каждыми двумя трёхкопеечными монетами лежат хотя бы три монеты. Сколько трёхкопеечных монет могло быть у Толи?
|
|
Сложность: 3+ Классы: 10,11
|
Даны две пересекающиеся плоскости, в одной из которых лежит произвольный треугольник площади S.
Существует ли его параллельная проекция на вторую плоскость, имеющая ту же площадь S?
|
|
Сложность: 3+ Классы: 10,11
|
В турнире по игре в "крестики – нолики", проведённом по системе "проиграл – выбыл", участвовали 18 школьников. Каждый день играли одну партию, участников которой выбирали жребием из ещё не выбывших школьников. Каждый из шестерых школьников утверждает, что сыграл ровно четыре партии. Не ошибается ли кто-то из них?
|
|
Сложность: 3+ Классы: 10,11
|
Число a – корень уравнения х11 + х7 + х3 = 1. При каких натуральных значениях n выполняется равенство a4 + a3 = an + 1?
|
|
Сложность: 3+ Классы: 10,11
|
В каком отношении делит площадь прямоугольной трапеции, описанной около окружности, биссектриса её острого угла?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 69]