ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 64665  (#1.1)

Темы:   [ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 10,11

Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел.

Прислать комментарий     Решение

Задача 64666  (#1.2)

Темы:   [ Прямые и плоскости в пространстве (прочее) ]
[ Параллельное проектирование (прочее) ]
[ Движение помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Даны две пересекающиеся плоскости, в одной из которых лежит произвольный треугольник площади S.
Существует ли его параллельная проекция на вторую плоскость, имеющая ту же площадь S?

Прислать комментарий     Решение

Задача 64667  (#1.3)

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 10,11

Дана таблица размером 8×8, изображающая шахматную доску. За каждый шаг разрешается поменять местами любые два столбца или любые две строки. Можно ли за несколько шагов сделать так, чтобы верхняя половина таблицы стала белой, а нижняя половина – чёрной?

Прислать комментарий     Решение

Задача 64668  (#2.1)

Темы:   [ Многочлены (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4-
Классы: 10,11

Существует ли такой многочлен  f(x) степени 6, что для любого x выполнено равенство  f(sinx) + f(cosx) = 1?

Прислать комментарий     Решение

Задача 64669  (#2.2)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные и описанные окружности ]
[ Углы между биссектрисами ]
[ Свойства биссектрис, конкуррентность ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 4-
Классы: 10,11

В квадрате ABCD на стороне ВС взята точка М, а на стороне CD – точка N так, что  ∠MAN = 45°.
Докажите, что центр описанной окружности треугольника AMN принадлежит диагонали АС.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .