Страница: 1
2 3 >> [Всего задач: 15]
Задача
64665
(#1.1)
|
|
Сложность: 3 Классы: 10,11
|
Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел.
Задача
64666
(#1.2)
|
|
Сложность: 3+ Классы: 10,11
|
Даны две пересекающиеся плоскости, в одной из которых лежит произвольный треугольник площади S.
Существует ли его параллельная проекция на вторую плоскость, имеющая ту же площадь S?
Задача
64667
(#1.3)
|
|
Сложность: 3 Классы: 10,11
|
Дана таблица размером 8×8, изображающая шахматную доску. За каждый шаг разрешается поменять местами любые два столбца или любые две строки. Можно ли за несколько шагов сделать так, чтобы верхняя половина таблицы стала белой, а нижняя половина – чёрной?
Задача
64668
(#2.1)
|
|
Сложность: 4- Классы: 10,11
|
Существует ли такой многочлен f(x) степени 6, что для любого x выполнено равенство f(sinx) + f(cosx) = 1?
Задача
64669
(#2.2)
|
|
Сложность: 4- Классы: 10,11
|
В квадрате ABCD на стороне ВС взята точка М, а на стороне CD – точка N так, что ∠MAN = 45°.
Докажите, что центр описанной окружности треугольника AMN принадлежит диагонали АС.
Страница: 1
2 3 >> [Всего задач: 15]